A | This mineral is Anthropogenic. |
G | This mineral is directly dated. |
B | This mineral is reported as having this age. |
Y | This mineral is using an age reported as an element mineralization period. |
O | This mineral is using an age calculated from all data at the locality. |
R | The age displayed for this mineral originates from a different, non-child locality. |
P | The age displayed for this mineral is the range of ages for this mineral at all of this locality's children. |
This mineral's age has not yet been recorded. |
Mineral name | Structural Groups | IMA Formula | Max Age (Ma) | Min Age (Ma) | # of Sublocalities containing mineral | LOCALITY IDs, not mindat ids | # of localities containing mineral |
---|---|---|---|---|---|---|---|
Abellaite (*) | Not in a structural group | NaPb2(CO3)2(OH) | 0 | 0 | 0 | 2 | |
Andersonite (*) | Not in a structural group | Na2Ca(UO2)(CO3)3·5-6H2O | 0 | 0 | 0 | 47 | |
Ankerite (*) | None | Ca(Fe2+,Mg)(CO3)2 | 56 | 23 | 0 | 3092 | |
Antlerite (*) | Not in a structural group | Cu2+3(SO4)(OH)4 | 252 | 246 | 0 | 246 | |
Aragonite (*) | Aragonite | Ca(CO3) | 252 | 0 | 0 | 3250 | |
Arsenuranylite (*) | Phosphuranylite | Ca(UO2)4(AsO4)2(OH)4·6H2O | 252 | 246 | 0 | 7 | |
Autunite (*) | Autunite | Ca(UO2)2(PO4)2·10-12H2O | 252 | 246 | 0 | 1272 | |
Azurite (*) | Not in a structural group | Cu3(CO3)2(OH)2 | 252 | 246 | 0 | 5509 | |
Bayleyite (*) | None | Mg2(UO2)(CO3)3·18H2O | 252 | 246 | 0 | 38 | |
Billietite (*) | None | Ba(UO2)6O4(OH)6·8H2O | 252 | 246 | 0 | 38 | |
Bismuth (*) | Arsenic | Bi | 252 | 0 | 0 | 1966 | |
Boltwoodite (*) | None | (K,Na)(UO2)(SiO3OH)·1.5H2O | 252 | 246 | 0 | 67 | |
Bornite (*) | None | Cu5FeS4 | 252 | 246 | 0 | 5516 | |
Brochantite (*) | Brochantite | Cu4(SO4)(OH)6 | 252 | 246 | 0 | 1633 | |
Calcite (*) | Calcite | Ca(CO3) | 252 | 0 | 0 | 27770 | |
Carnotite (*) | None | K2(UO2)2(VO4)2·3H2O | 252 | 246 | 0 | 1184 | |
Čejkaite (*) | None | Na4(UO2)(CO3)3 | 0 | 0 | 0 | 9 | |
Chalcocite (*) | None | Cu2S | 252 | 246 | 0 | 5707 | |
Chalconatronite (*) | None | Na2Cu(CO3)2·3H2O | 252 | 246 | 0 | 23 | |
Chalcopyrite (*) | Chalcopyrite | CuFeS2 | 252 | 246 | 0 | 27198 | |
Clausthalite (*) | Rocksalt | PbSe | 252 | 0 | 0 | 281 | |
Coffinite (*) | Zircon | U(SiO4)·nH2O | 252 | 246 | 0 | 566 | |
Compreignacite (*) | Compreignacite | K2(UO2)6O4(OH)6·7H2O | 252 | 246 | 0 | 27 | |
Covellite (*) | Covellite | CuS | 252 | 246 | 0 | 4165 | |
Cuprosklodowskite (*) | None | Cu(UO2)2(SiO3OH)2·6H2O | 252 | 246 | 0 | 58 | |
Devilline (*) | Devilline | CaCu4(SO4)2(OH)6·3H2O | 252 | 246 | 0 | 366 | |
Dolomite (*) | None | CaMg(CO3)2 | 252 | 0 | 0 | 9895 | |
Enargite (*) | Enargite Wurtzite | Cu3AsS4 | 252 | 246 | 0 | 910 | |
Erythrite (*) | Vivianite | Co3(AsO4)2·8H2O | 252 | 0 | 0 | 814 | |
Geerite (*) | None | Cu8S5 | 252 | 246 | 0 | 38 | |
Goethite (*) | Diaspore | FeO(OH) | 252 | 0 | 0 | 7437 | |
Gordaite (*) | Ktenasite | NaZn4(SO4)(OH)6Cl·6H2O | 252 | 0 | 0 | 17 | |
Gypsum (*) | Gypsum | Ca(SO4)·2H2O | 252 | 0 | 0 | 6890 | |
Heinrichite (*) | None | Ba(UO2)2(AsO4)2·10H2O | 252 | 246 | 0 | 18 | |
Hematite (*) | Corundum | Fe2O3 | 252 | 0 | 0 | 14640 | |
Huemulite (*) | Pascoite | Na4MgV5+10O28·24H2O | 252 | 246 | 0 | 16 | |
Ktenasite (*) | Ktenasite Devilline | ZnCu4(SO4)2(OH)6·6H2O | 252 | 246 | 0 | 75 | |
Lavendulan (*) | None | NaCaCu5(AsO4)4Cl·5H2O | 252 | 246 | 0 | 149 | |
Lecoqite-(Y) (*) | Not in a structural group | Na3Y(CO3)3·6H2O | 252 | 0 | 0 | 2 | |
Malachite (*) | Malachite | Cu2(CO3)(OH)2 | 252 | 246 | 0 | 12537 | |
Metamunirite (*) | None | NaV5+O3 | 0 | 0 | 0 | 14 | |
Montroseite (*) | Diaspore | (V3+,Fe2+,V4+)O(OH) | 252 | 246 | 0 | 136 | |
Natrouranospinite (*) | Natroautunite | Na2(UO2)2(AsO4)2·5H2O | 252 | 246 | 0 | 13 | |
Natrozippeite (*) | Zippeite | Na5(UO2)8(SO4)4O5(OH)3·12H2O | 252 | 246 | 0 | 41 | |
Naumannite (*) | Not in a structural group | Ag2Se | 252 | 0 | 0 | 192 | |
Olivenite (*) | Andalusite | Cu2(AsO4)(OH) | 252 | 246 | 0 | 492 | |
Gersdorffite-Pa3 (*) | Pyrite | NiAsS | 252 | 0 | 0 | 767 | |
Pyrite (*) | Pyrite | FeS2 | 252 | 0 | 0 | 39462 | |
Pyrolusite (*) | Rutile | MnO2 | 252 | 0 | 0 | 3106 | |
Quartz (*) | Quartz | SiO2 | 56 | 23 | 0 | 61156 | |
Roscoelite (*) | Mica | KV3+2(Si3Al)O10(OH)2 | 252 | 246 | 0 | 253 | |
Rutile (*) | Rutile | TiO2 | 252 | 0 | 0 | 5614 | |
Sanrománite (*) | Burbankite | Na2CaPb3(CO3)5 | 252 | 0 | 0 | 2 | |
Schröckingerite (*) | None | NaCa3(UO2)(SO4)(CO3)3F·10H2O | 0 | 0 | 0 | 128 | |
Sengierite (*) | Sengierite | Cu2(UO2)2(VO4)2(OH)2·6H2O | 252 | 246 | 0 | 11 | |
Siderite (*) | Calcite | Fe(CO3) | 252 | 0 | 0 | 6417 | |
Siegenite (*) | Spinel | CoNi2S4 | 252 | 0 | 0 | 249 | |
Spionkopite (*) | None | Cu39S28 | 252 | 246 | 0 | 73 | |
Tennantite-(Fe) (*) | Tetrahedrite | Cu6(Cu4Fe2)As4S13 | 252 | 246 | 0 | 1803 | |
Tenorite (*) | None | CuO | 252 | 246 | 0 | 1101 | |
Tetrahedrite-(Zn) (*) | Tetrahedrite | Cu6(Cu4Zn2)Sb4S13 | 252 | 246 | 0 | 5317 | |
Thénardite (*) | None | Na2(SO4) | 252 | 0 | 0 | 299 | |
Torbernite (*) | None | Cu(UO2)2(PO4)2·12H2O | 252 | 246 | 0 | 1059 | |
Trögerite (*) | Natroautunite | (H3O)(UO2)(AsO4)·3H2O | 252 | 246 | 0 | 22 | |
Tyuyamunite (*) | None | Ca(UO2)2(VO4)2·5-8H2O | 252 | 246 | 0 | 628 | |
Uraninite (*) | Fluorite | UO2 | 252 | 246 | 0 | 2718 | |
Uranophane-α (*) | None | Ca(UO2)2(SiO3OH)2·5H2O | 252 | 246 | 0 | 890 | |
Vandendriesscheite (*) | None | Pb1.6(UO2)10O6(OH)11·11H2O | 252 | 246 | 0 | 52 | |
Volborthite (*) | Volborthite | Cu3V2O7(OH)2·2H2O | 252 | 246 | 0 | 155 | |
Wittichenite (*) | None | Cu3BiS3 | 252 | 246 | 0 | 297 | |
Xenotime-(Y) (*) | Zircon | Y(PO4) | 252 | 0 | 0 | 939 | |
Zeunerite (*) | Autunite | Cu(UO2)2(AsO4)2·12H2O | 252 | 246 | 0 | 185 |
Age ID | Locality Notes |
---|---|
Michelle_516 | Primary stratabound mineralization of the Eureka mine occurs within the Buntsandstein redbeds. |
Michelle_524 | Secondary mineralization of the Eureka mine occurs in small veins, fractures and joints. |
Michelle_525 | The third stage of mineralization of the Eureka mine is due to supergene processes. Natural pseudomorphic replacement of primary ores result in a wide variety of secondary minerals, especially uranium minerals. |
Michelle_526 | Recent post-mining mineralization on tunnel walls of the Eureka mine are considered Anthropogenic. They occur as crusts, coatings and cryptocrystalline efflorescences. |
Excel ID | Max Age (Ma) | Min Age (Ma) | Age as listed in reference | Dating Method | Age Interpret | Prioritized? | Sample Source | Sample Num | Run Num | Age from other Locality | Dated Mineral | Minerals explicitely stated as having this age | Age applies to these Elements | MinDat Locality ID | Dated Locality (Max Age) | Location as listed in reference | Reference | Reference DOI | Reference ID | Age Notes | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Michelle_516 | 252 | 246 | Buntsandstein | Stratigraphy | Age of primary ore mineralization | Cu, V, U | 53316 | Eureka Mine, Castell-estaó, La Torre De Cabdella (La Torre De Capdella), La Vall Fosca, El Pallars Jussà, Lleida (Lérida), Catalonia, Spain | Eureka mine | Ibáñez-Insa et al. (2017) | 10.1127/ejm/2017/0029-2630 | EJM29_915 | Stage 1 of 4. Primary ore mineralization. | ||||||||
Michelle_524 | 56 | 23 | Eocene-Oligocene | Stratigraphy | Age of tectonic activities and vein mineralization | Ankerite, Quartz | 53316 | Eureka Mine, Castell-estaó, La Torre De Cabdella (La Torre De Capdella), La Vall Fosca, El Pallars Jussà, Lleida (Lérida), Catalonia, Spain | Eureka mine | Ibáñez-Insa et al. (2017) | 10.1127/ejm/2017/0029-2630 | EJM29_915 | Stage 2 of 4. Tectonic activities of the Pyrenean orogeny allowed the remobilization of chemical species. Small veins, faults and joints were mineralized with quartz, ankerite and some sulfur minerals. | ||||||||
Michelle_525 | 23 | 0 | Oligocene-0 | Stratigraphy | Age of pseudomorphic replacement of primary ore | 53316 | Eureka Mine, Castell-estaó, La Torre De Cabdella (La Torre De Capdella), La Vall Fosca, El Pallars Jussà, Lleida (Lérida), Catalonia, Spain | Eureka mine | Ibáñez-Insa et al. (2017) | 10.1127/ejm/2017/0029-2630 | EJM29_915 | Stage 3 of 4. Supergene process resulting in natural pseudomorphic replacement of primary ores. This allowed extensive secondary oxidized minerals including sulfates, arsenates, phosphates, vanadates or selenates. Many of the oxidized minerals contain U. | |||||||||
Michelle_526 | 0 | 0 | 0 | Stratigraphy | Age of anthropogenic mineralization | Andersonite, Cejkaite, Liebigite, Schrockingerite, Abellaite | 53316 | Eureka Mine, Castell-estaó, La Torre De Cabdella (La Torre De Capdella), La Vall Fosca, El Pallars Jussà, Lleida (Lérida), Catalonia, Spain | Eureka mine | Ibáñez-Insa et al. (2017) | 10.1127/ejm/2017/0029-2630 | EJM29_915 | Stage 4 of 4. Supergene process resulting in anthropogenic mineralization. Post mining, secondary mineralization occurring as encrustations, coatings and cryptocrystalline efflorescences. |
Sample | Source Locality | Reference URL |
---|---|---|
R070624 | Eureka Mine, Castell-estaó, La Torre De Cabdella (La Torre De Capdella), La Vall Fosca, El Pallars Jussà, Lleida (Lérida), Catalonia, Spain | https://rruff.info/R070624 |
All locality data graciously provided by mindat.org
All age data...
Other copyright data...