Tremolite R050210

Browse Search Results 
<< Previous |  Back to Search Results |  Next >> 
Record 3805 of 4216  

Name: Tremolite
RRUFF ID: R050210
Ideal Chemistry: ◻Ca2(Mg5.0-4.5Fe2+0.0-0.5)Si8O22(OH)2
Locality: Sugar Lake, Cherryville, British Columbia, Canada
Source: Lloyd Twaites
Owner: RRUFF
Description: Green bladed crystal fragment
Status: The identification of this mineral has been confirmed by X-ray diffraction and chemical analysis
Mineral Group: [ amphibole (107) ]
Quick search: [ All Tremolite samples (17) ]
CHEMISTRY 
RRUFF ID: R050210.2
Sample Description: Microprobe Fragment
Measured Chemistry: (Na0.34K0.06)(Ca1.96Mg0.01)Mg4.94(Si7.50Al0.46)O22(OH)2
Microprobe Data File: [ Download Excel File ]
RAMAN SPECTRUM 
RRUFF ID:
Sample Description: Unoriented Raman on the primary sample
DOWNLOADS:

  To download sample data,
  please select a specific
  orientation angle.

Direction of polarization of laser relative to fiducial mark:
X Min:    X Max:    X Sort:
BROAD SCAN WITH SPECTRAL ARTIFACTS
RRUFF ID: R050210
Wavelength:
Sample Description: Unoriented Raman on the primary sample
Instrument settings: Thermo Almega XR 532nm @ 100% of 150mW
INFRARED SPECTRUM (Attenuated Total Reflectance) 
RRUFF ID: R050210.1
Sample Description: Powder
Instrument settings: SensIR Durascope on a Nicolet Magna 860 FTIR
Resolution:
X Min:    X Max:    X Sort:
RRUFF ID: R050210.1
Sample Description: Powder
Instrument settings: PIKE GladiATR - Far-IR on a Nicolet Magna 860 FTIR
Resolution:
X Min:    X Max:    X Sort:
POWDER DIFFRACTION 
RRUFF ID: R050210.1
Sample Description: Powder
Cell Refinement Output: a: 9.8483(4)Å    b: 18.042(1)Å    c: 5.2747(8)Å
alpha: 90.°    beta: 104.806(8)°    gamma: 90.°   Volume: 906.1(1)Å3    Crystal System: monoclinic
  File Type Information Close
Calculated diffraction file.

  File Type Information Close
Output file from the Bruker D8 Advance instrument. Includes device headers and XY data.

  File Type Information Close
Output file from the Bruker D8 Advance instrument. Includes device headers and XY data.

X Min:    X Max:    X Sort:
REFERENCES for Tremolite

American Mineralogist Crystal Structure Database Record: [view record]

Anthony J W, Bideaux R A, Bladh K W, and Nichols M C (1990) Handbook of Mineralogy, Mineral Data Publishing, Tucson Arizona, USA, by permission of the Mineralogical Society of America. [view file]

Höpfner J G A (1789) Ueber die Klassifikation der Fossilien in einem Schreiben des Herausgebers an Herrn Dr. Karsten in Halle, Magazin für die Naturkunde Helvetiens, 4, 255-332   [view file]

Delamétherie J C (1792) Observations et mémoires sur la physique, sur l’histoire naturelle, et sur les arts et métiers. Discours préliminaire, Observations sur la Physique, sur l’Histoire Naturelle et sur les Arts, 40, 2-40   [view file]

Winchell A N (1931) Further studies in the amphibole group, American Mineralogist, 16, 250-266   [view file]

Ishikawa T, Drinker P (1933) Effects of certain silicate dusts on the lungs, The Journal of Industrial Hygiene, 15, 66-78   [view file]

Zussman J (1959) A re-examination of the structure of tremolite, Acta Crystallographica, 12, 309-312

Klein C (1966) Mineralogy and petrology of the metamorphosed Wabush Iron Formation, Southwestern Labrador, Journal of Petrology, 7, 246-305

Hawthorne F C, Grundy H D (1976) The crystal chemistry of the amphiboles: IV. X-ray and neutron refinements of the crystal structure of tremolite, The Canadian Mineralogist, 14, 334-345   [view file]

Veblen D R, Buseck P R, Burnham C W (1977) Asbestiform chain silicates: New minerals and structural groups, Science, 198, 359-365   [view file]

Blaha J J, Rosasco G J (1978) Raman microprobe spectra of individual microcrystals and fibers of talc, tremolite, and related silicate minerals, Analytical Chemistry, 50, 892-896   [link]

Leake B E (1978) Nomenclature of amphiboles, American Mineralogist, 63, 1023-1052   [view file]

Dungan M A (1979) Bastite pseudomorphs after orthopyroxene, clinopyroxene and tremolite, The Canadian Mineralogist, 17, 729-740   [view file]

Hutchison J L, Whittaker E J W (1979) The nature of electron diffraction patterns of amphibole asbestos and their use in identification, Environmental Research, 20, 445-449   [view file]

LeAnderson P J (1981) Calculation of temperature and X(CO2) values for tremolite—K–feldspar—diopside—epidote assemblages, The Canadian Mineralogist, 19, 619-630   [view file]

Steel E, Wylie A (1981) Mineralogical characteristics of asbestos, 1, in Geology of Asbestos Deposits Edwards Brothers, Inc. Ann Arbor, MI. 93-99

Goldman D S, Rossman G R (1982) The identification of Fe2+ in the M4 site of calcic amphiboles: reply, American Mineralogist, 67, 340-342   [view file]

Dorling M, Zussman J (1985) An investigation of nephrite jade by electron microscopy, Mineralogical Magazine, 49, 31-36   [view file]

Dorling M, Zussman J (1987) Characteristics of asbestiform and non-asbestiform calcic amphiboles, Lithos, 20, 469-489

Zussman J (1987) Minerals and the electron microscope, Mineralogical Magazine, 51, 129-138   [view file]

Blount A M (1990) Detection and quantification of asbestos and other trace minerals in powdered industrial-mineral samples, in Process Mineralogy IX The Mineral, Metals & Materials Society, edited by W Petruk, R D Hagni, S Pignolet-Brandom, D M Hausen 557-570   [view file]

Comodi P, Mellini M, Ungaretti L, Zanazzi P F (1991) Compressibility and high pressure structure refinement of tremolite, pargasite and glaucophane, European Journal of Mineralogy, 3, 485-499

Bard D, Yarwood J, Tylee B (1997) Asbestos fibre identification by Raman microspectroscopy, Journal of Raman Spectroscopy, 28, 803-809   [link]

Hawthorne F C, Della Ventura G, Robert J L, Welch M D, Raudsepp M, Jenkins D M (1997) A Rietveld and infrared study of synthetic amphiboles along the potassium-richterite-tremolite join, American Mineralogist, 82, 708-716   [view file]

Leake B E, Woolley A R, Arps C E S, Birch W D, Gilbert M C, Grice J D, Hawthorne F C, Kato A, Kisch H J, Krivovichev V G, Linthout K, Laird J, Mandarino J A, Maresch W V, Nickel E H, Rock N M S, Schumacher J C, Smith D C, Stephenson N C N, Ungaretti L, Whittaker E J W, Youzhi G (1997) Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names, The Canadian Mineralogist, 35, 219-246   [view file]

Evans B W, Yang H (1998) Fe-Mg order-disorder in tremolite-actinolite-ferro-actinolte at ambient and high temperature, American Mineralogist, 83, 458-475   [view file]

Robert J L, Della Ventura G, Hawthorne F C (1999) Near-infrared study of short-range disorder of OH and F in monoclinic amphiboles, American Mineralogist, 84, 86-91   [view file]

Hawthorne F C, Welch M D, della Ventura G, Liu S, Robert J L, Jenkins D M (2000) Short-range order in synthetic aluminous tremolites: An infrared and triple-quantum MAS NMR study, American Mineralogist, 85, 1716-1724   [view file]

Verkouteren J R, Wylie A G (2000) The tremolite-actinolite-ferro–actinolite series: systematic relationships among cell parameters, composition, optical properties, and habit, and evidence of discontinuities, American Mineralogist, 85, 1239-1254   [view file]

Huang E P (2002) Raman spectroscopic study of amphiboles, Doctoral Dissertation, 1, 1-138   [view file]

Su S C (2003) A rapid and accurate procedure for the determination of refractive indices of regulated asbestos minerals, American Mineralogist, 88, 1979-1982   [view file]

Rinaudo C, Belluso E, Gastaldi D (2004) Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos, Mineralogical Magazine, 68, 455-465   [view file]

Millette J R, Bandli B R (2005) Asbestos identification using available standard methods, The Microscope, 53, 179-185

Petry R, Mastalerz R, Zahn S, Mayerhöfer T G, Völksch G, Viereck-Götte L, Kreher-Hartmann B, Holz L, Lankers M, Popp J (2006) Asbestos mineral analysis by UV Raman and energy-dispersive X-ray spectroscopy, ChemPhysChem, 7, 414-420   [view file]

Roth P (2006) The early history of tremolite, Axis, 2, issue 3 1-10   [view file]

Roth P (2007) Tremolite, in Minerals first discovered in Switzerland and minerals named after Swiss individuals Kristallografik Verlag Achberg Germany 150-151

Antao S M, Hassan I, Wang J, Lee P L, Toby B H (2008) State-of-the-art high-resolution powder x-ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite, The Canadian Mineralogist, 46, 1501-1509   [view file]

Ballirano P, Andreozzi G B, Belardi G (2008) Crystal chemical and structural characterization of fibrous tremolite from Susa Valley, Italy, with comments on potential harmful effects on human health, American Mineralogist, 93, 1349-1355   [view file]

Harper M, Lee E G, Doorn S S, Hammond O (2008) Differentiating non-asbestiform amphibole and amphibole asbestos by size characteristics, Journal of Occupational and Environmental Hygiene, 5, 761-770   [view file]

Su S C (2008) in How to use the d-spacing/interfacial angle tables to index zone-axis patterns of amphibole asbestos minerals obtained by selected area electron diffraction in transmission electron microscope Asbestos Analysis Consulting Newark, Delaware 1-160   [view file]

Apopei A I, Buzgar N (2010) The Raman study of amphiboles, Analele Stiintifice Ale Universitatii, Al. I. Cuza Iasi Geologie, 56, 57-83   [view file]

Gunter M E (2010) Defining asbestos: differences between the built and natural environments, Chimia, 64, 747-752

Jenkins D M, Ventura G D, Orberti R, Bozhilov K (2013) Synthesis and characterization of amphiboles along the tremolite-glaucophane join, American Mineralogist, 98, 588-600

McNamee B D, Gunter M E (2013) Compositional analysis and morphological relationships of amphiboles, talc and other minerals found in the talc deposits from the Gouverneur mining district, New York (Part 1 of 2), The Microscope, 61, 147-161

McNamee B D, Gunter M E (2014) Compositional analysis and morphological relationships of amphiboles, talc and other minerals found in the talc deposits from the Gouverneur mining district, New York (Part 2 of 2), The Microscope, 62, 3-13

Harper M, Gosen B V, Crankshaw O S, Doorn S S, Ennis T J, Harrison S E (2015) Characterization of Lone Pine, California, tremolite asbestos and preparation of research material, The Annals of Occupational Hygiene, 59, 91-103

Brown J M, Abramson E H (2016) Elasticity of calcium and calcium-sodium amphiboles, Physics of The Earth and Planetary Interiors, 261, 161-171

Thompson E C, Campbell A J, Liu Z (2016) In-situ infrared spectroscopic studies of hydroxyl in amphiboles at high pressure, American Mineralogist, 101, 706-712

Oberti R, Cámara F, Bellatreccia F, Radica F, Gianfagna A, Boiocchi M (2018) Fluoro-tremolite from the Limecrest-Southdown quarry, Sparta, New Jersey, USA: crystal chemistry of a newly approved end-member of the amphibole supergroup, Mineralogical Magazine, 82, 145-157   [view file]

Sbroscia M, Della Ventura G, Iezzi G, Sodo A (2018) Quantifying the A-site occupancy in amphiboles: a Raman study in the OH-stretching region, European Journal of Mineralogy, 30, 429-436

Ballirano P, Pacella A (2020) Towards a detailed comprehension of the inertisation processes of amphibole asbestos: in situ high-temperature behaviour of fibrous tremolite, Mineralogical Magazine, 84, 888-899

Tribaudino M, Hovis G L, Almer C, Leaman A (2022) Thermal expansion of minerals in the amphibole supergroup, American Mineralogist, 107, 1302-1312

Ott J N, Kalkan B, Kunz M, Berlanga G, Yuvali A F, Williams Q (2023) Structural behavior of C2/m tremolite to 40 GPa: A high-pressure single-crystal X-ray diffraction study, American Mineralogist, 108, 903-914

Su S C in A preliminary characterization of “Libby-type amphiboles” by SAED (Selected Area Electron Diffraction) Batta Labratories, Inc. Newark, Delaware 1-7   [view file]